When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    These include the Calabi triangle (a triangle with three congruent inscribed squares), [10] the golden triangle and golden gnomon (two isosceles triangles whose sides and base are in the golden ratio), [11] the 80-80-20 triangle appearing in the Langley's Adventitious Angles puzzle, [12] and the 30-30-120 triangle of the triakis triangular tiling.

  3. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.

  4. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    An isosceles triangle is the join of a ... Without the 1/n! it is the formula for the volume of an n ... the formula at the beginning of this section is obtained by ...

  5. Outline of geometry - Wikipedia

    en.wikipedia.org/wiki/Outline_of_geometry

    Brahmagupta's formula; Bretschneider's formula; Compass and straightedge constructions. Squaring the circle; Complex geometry; Conic section. Focus; Circle. List of circle topics; Thales' theorem; Circumcircle; Concyclic; Incircle and excircles of a triangle; Orthocentric system; Monge's theorem; Power center; Nine-point circle; Circle points ...

  6. Disphenoid - Wikipedia

    en.wikipedia.org/wiki/Disphenoid

    Other names for the same shape are isotetrahedron, [2] sphenoid, [3] bisphenoid, [3] isosceles tetrahedron, [4] equifacial tetrahedron, [5] almost regular tetrahedron, [6] and tetramonohedron. [ 7 ] All the solid angles and vertex figures of a disphenoid are the same, and the sum of the face angles at each vertex is equal to two right angles .

  7. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  8. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]

  9. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid. For instance, while all the cross-sections of a ball are disks, [2] the cross-sections of a cube depend on how the cutting plane is related to the ...