Search results
Results From The WOW.Com Content Network
m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n. The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then ...
An ErdÅ‘s–Woods number, since it is possible to find sequences of 56 consecutive integers such that each inner member shares a factor with either the first or the last member. [ 5 ] The only known number n such that φ( n − 1)σ( n − 1) = φ( n )σ( n ) = φ( n + 1)σ( n + 1) , where φ( m ) is Euler's totient function and σ( n ) is the ...
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
A set of integers can also be called coprime if its elements share no common positive factor except 1. A stronger condition on a set of integers is pairwise coprime, which means that a and b are coprime for every pair (a, b) of different integers in the set.
However, amicable numbers where the two members have different smallest prime factors do exist: there are seven such pairs known. [8] Also, every known pair shares at least one common prime factor. It is not known whether a pair of coprime amicable numbers exists, though if any does, the product of the two must be greater than 10 65.
The factorizations are often not unique in the sense that the unit could be absorbed into any other factor with exponent equal to one. The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right ...
Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...