When.com Web Search

  1. Ads

    related to: how to solve unknown exponents with log calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The Lambert W function is used to solve equations in which the unknown quantity occurs both in the base and in the exponent, or both inside and outside of a logarithm. The strategy is to convert such an equation into one of the form ze z = w and then to solve for z using the W function. For example, the equation = +

  3. TI-36 - Wikipedia

    en.wikipedia.org/wiki/TI-36

    It addition to standard features such as trigonometric functions, exponents, logarithm, and intelligent order of operations found in TI-30 and TI-34 series of calculators, it also include base (decimal, hexadecimal, octal, binary) calculations, complex values, statistics. Conversions include polar-rectangular coordinates (P←→R), angles.

  4. Transcendental equation - Wikipedia

    en.wikipedia.org/wiki/Transcendental_equation

    If the unknown, say x, occurs only in exponents: . applying the natural logarithm to both sides may yield an algebraic equation, [3] e.g. = transforms to ⁡ = ⁡ + ⁡, which simplifies to ⁡ + (⁡ ⁡) ⁡ =, which has the solutions = ⁡ (⁡) (⁡) ⁡.

  5. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1). The simplicity of this definition, which is matched in many ...

  6. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.

  7. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...

  8. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.

  9. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable ⁠ ⁠ is denoted ⁠ ⁡ ⁠ or ⁠ ⁠, with the two notations used interchangeab