Search results
Results From The WOW.Com Content Network
The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as this: Since the inverse function of f(w) = e w is called the logarithm, it makes sense to call the inverse "function" of the product we w as "product logarithm".
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.
These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...
If the unknown, say x, occurs only in exponents: . applying the natural logarithm to both sides may yield an algebraic equation, [3] e.g. = transforms to = + , which simplifies to + ( ) =, which has the solutions = () () .
Exponentiation occurs in many areas of mathematics and its inverse function is often referred to as the logarithm. For example, the logarithm of a matrix is the (multi-valued) inverse function of the matrix exponential. [97] Another example is the p-adic logarithm, the inverse function of the p-adic exponential.
The logarithm of a complex number is thus a multi-valued function, because φ is multi-valued. Finally, the other exponential law =, which can be seen to hold for all integers k, together with Euler's formula, implies several trigonometric identities, as well as de Moivre's formula.
Similar asymptotic analysis is possible for exponential generating functions; with an exponential generating function, it is a n / n! that grows according to these asymptotic formulae. Generally, if the generating function of one sequence minus the generating function of a second sequence has a radius of convergence that is larger than ...
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.