When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dixon's factorization method - Wikipedia

    en.wikipedia.org/wiki/Dixon's_factorization_method

    In number theory, Dixon's factorization method (also Dixon's random squares method[ 1] or Dixon's algorithm) is a general-purpose integer factorization algorithm; it is the prototypical factor base method. Unlike for other factor base methods, its run-time bound comes with a rigorous proof that does not rely on conjectures about the smoothness ...

  3. Dixon's identity - Wikipedia

    en.wikipedia.org/wiki/Dixon's_identity

    In mathematics, Dixon's identity (or Dixon's theorem or Dixon's formula) is any of several different but closely related identities proved by A. C. Dixon, some involving finite sums of products of three binomial coefficients, and some evaluating a hypergeometric sum. These identities famously follow from the MacMahon Master theorem, and can now ...

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is called a composite number, or it is not, in which case it is called a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way.

  5. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    Quadratic sieve. The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second-fastest method known (after the general number field sieve). It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization ...

  6. Congruence of squares - Wikipedia

    en.wikipedia.org/wiki/Congruence_of_squares

    This corresponds to a set of y values whose product is a square number, i.e. one whose factorization has only even exponents. The products of x and y values together form a congruence of squares. This is a classic system of linear equations problem, and can be efficiently solved using Gaussian elimination as soon as the number of rows exceeds ...

  7. Continued fraction factorization - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction...

    The continued fraction method is based on Dixon's factorization method. It uses convergents in the regular continued fraction expansion of. Since this is a quadratic irrational, the continued fraction must be periodic (unless n is square, in which case the factorization is obvious). It has a time complexity of , in the O and L notations.

  8. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log2 n⌋ + 1 bits) is of the form. in O and L-notations. [1] It is a generalization of the special number field sieve: while ...

  9. Category:Integer factorization algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Integer...

    Pages in category "Integer factorization algorithms". The following 26 pages are in this category, out of 26 total. This list may not reflect recent changes. Integer factorization.