When.com Web Search

  1. Ads

    related to: perimeter of a rectangle practice problems 5th grade free printable

Search results

  1. Results From The WOW.Com Content Network
  2. Perimeter - Wikipedia

    en.wikipedia.org/wiki/Perimeter

    For example, the perimeter of a rectangle of width 0.001 and length 1000 is slightly above 2000, while the perimeter of a rectangle of width 0.5 and length 2 is 5. Both areas are equal to 1. Proclus (5th century) reported that Greek peasants "fairly" parted fields relying on their perimeters. [ 2 ]

  3. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square.

  4. Ozone depletion is a separate problem caused by chlorofluorocarbons (CFCs) [233] which have been released into the atmosphere. [234] However, CFCs are strong greenhouse gases . [ 235 ] [ 236 ] Further, the hole in the ozone layer is shrinking and in 2019 was the smallest it had been since 1982, [ 237 ] [ 238 ] while global warming continues.

  5. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or ⁠:, ⁠ with ⁠ ⁠ approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.

  6. Fermi problem - Wikipedia

    en.wikipedia.org/wiki/Fermi_problem

    A Fermi problem (or Fermi question, Fermi quiz), also known as an order-of-magnitude problem, is an estimation problem in physics or engineering education, designed to teach dimensional analysis or approximation of extreme scientific calculations. Fermi problems are usually back-of-the-envelope calculations.

  7. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.