When.com Web Search

  1. Ad

    related to: inch fraction to decimal table pdf converter i love

Search results

  1. Results From The WOW.Com Content Network
  2. Drill bit sizes - Wikipedia

    en.wikipedia.org/wiki/Drill_bit_sizes

    So, instead of 78/64 inch, or 1 14/64 inch, the size is noted as 1 7/32 inch. Below is a chart providing the decimal-fraction equivalents that are most relevant to fractional-inch drill bit sizes (that is, 0 to 1 by 64ths). (Decimal places for .25, .5, and .75 are shown to thousandths [.250, .500, .750], which is how machinists usually think ...

  3. Duodecimal - Wikipedia

    en.wikipedia.org/wiki/Duodecimal

    If the given number is in decimal and the target base is duodecimal, the method is same. Using the digit conversion tables: (decimal) 10,000 + 2,000 + 300 + 40 + 5 + 0.6 = (duodecimal) 5,954 + 1,1A8 + 210 + 34 + 5 + 0; 7249. To sum these partial products and recompose the number, the addition must be done with duodecimal rather than decimal ...

  4. List of drill and tap sizes - Wikipedia

    en.wikipedia.org/wiki/List_of_drill_and_tap_sizes

    The major minus pitch technique also works for inch-based threads, but you must first calculate the pitch by converting the fraction of threads-per-inch (TPI) into a decimal. For example, a screw with a pitch of 1/20 in (20 threads per inch) has a pitch of 0.050 in and a 1 ⁄ 13 in pitch (13 threads per inch) has a pitch of 0.077 in.

  5. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  6. Inch - Wikipedia

    en.wikipedia.org/wiki/Inch

    Subdivisions of an inch are typically written using dyadic fractions with odd number numerators; for example, two and three-eighths of an inch would be written as ⁠2 + 3 / 8 ⁠ ″ and not as 2.375″ nor as ⁠2 + 6 / 16 ⁠ ″. However, for engineering purposes fractions are commonly given to three or four places of decimals and have been ...

  7. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    He also gave two other approximations of π: π ≈ 22 ⁄ 7 and π ≈ 355 ⁄ 113, which are not as accurate as his decimal result. The latter fraction is the best possible rational approximation of π using fewer than five decimal digits in the numerator and denominator. Zu Chongzhi's results surpass the accuracy reached in Hellenistic ...

  8. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    Approximating a fraction by a fractional decimal number: 5 / 3 1.6667: 4 decimal places: Approximating a fractional decimal number by one with fewer digits 2.1784: 2.18 2 decimal places Approximating a decimal integer by an integer with more trailing zeros 23217: 23200: 3 significant figures Approximating a large decimal integer using ...

  9. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.