Ad
related to: carbon monoxide oxidation process
Search results
Results From The WOW.Com Content Network
Carbon monoxide strips oxygen off metal oxides, reducing them to pure metal in high temperatures, forming carbon dioxide in the process. Carbon monoxide is not usually supplied as is, in the gaseous phase, in the reactor, but rather it is formed in high temperature in presence of oxygen-carrying ore, or a carboniferous agent such as coke, and ...
The Boudouard reaction is an important process inside a blast furnace. The reduction of iron oxides is not achieved by carbon directly, as reactions between solids are typically very slow, but by carbon monoxide. The resulting carbon dioxide undergoes a (reverse) Boudouard reaction upon contact with coke carbon.
Sulfuric acid is produced from sulfur trioxide which is obtained by oxidation of sulfur dioxide. Food-grade phosphates are generated via oxidation of white phosphorus. Carbon monoxide in automobile exhaust is converted to carbon dioxide in catalytic converters.
For example, the thermal ignition temperature of carbon monoxide is normally 609 °C (1,128 °F). By utilizing a suitable oxidation catalyst, the ignition temperature can be reduced to around 200 °C (392 °F). [8] This can result in lower operating costs than a RTO.
Oxidation is the process of an element losing electrons. For example, iron will transfer two of its electrons to oxygen, forming an oxide. This occurs all throughout as an unintended part of the steelmaking process. Oxygen blowing is a method of steelmaking where oxygen is blown through pig iron to lower the carbon content.
Basic oxygen steelmaking is a primary steelmaking process for converting molten pig iron into steel by blowing oxygen through a lance over the molten pig iron inside the converter. Exothermic heat is generated by the oxidation reactions during blowing. The basic oxygen steel-making process is as follows:
2, and coke (impure carbon) to produce P 4. The chemical equation for this process when starting with fluoroapatite, a common phosphate mineral, is: 4 Ca 5 (PO 4) 3 F + 18 SiO 2 + 30 C → 3 P 4 + 30 CO + 18 CaSiO 3 + 2 CaF 2. Of historic interest is the Leblanc process. A key step in this process is the reduction of sodium sulfate with coal: [3]
Understanding the role of • HO in the oxidation process of methane (CH 4) present in the atmosphere to first carbon monoxide (CO) and then carbon dioxide (CO 2) is important for assessing the residence time of this greenhouse gas, the overall carbon budget of the troposphere, and its influence on the process of global warming.