Search results
Results From The WOW.Com Content Network
In semiconductor physics, the chemical potential of a ... to chemical potential. A simple example is a ... real solutions . Generally the chemical potential is given ...
A ChemFET is a chemically-sensitive field-effect transistor, that is a field-effect transistor used as a sensor for measuring chemical concentrations in solution. [1] When the target analyte concentration changes, the current through the transistor will change accordingly. [2] Here, the analyte solution separates the source and gate electrodes. [3]
These two examples show that an electrical potential and a chemical potential can both give the same result: A redistribution of the chemical species. Therefore, it makes sense to combine them into a single "potential", the electrochemical potential , which can directly give the net redistribution taking both into account.
µ is the total chemical potential of electrons, or Fermi level (in semiconductor physics, this quantity is more often denoted E F). The Fermi level of a solid is directly related to the voltage on that solid, as measured with a voltmeter. Conventionally, in band structure plots the Fermi level is taken to be the zero of energy (an arbitrary ...
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
Examples include lasers, electron microscopes, magnetic resonance imaging (MRI) devices and the components used in computing hardware. The study of semiconductors led to the invention of the diode and the transistor, which are indispensable parts of modern electronics systems, computer and telecommunications devices.
The standard potential of the cell is equal to the more positive E o value minus the more negative E o value. For example, in the figure above the solutions are CuSO 4 and ZnSO 4. Each solution has a corresponding metal strip in it, and a salt bridge or porous disk connecting the two solutions and allowing SO 2−
MOSFET, showing gate (G), body (B), source (S), and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).. The MOSFET (metal–oxide–semiconductor field-effect transistor) [1] is a type of insulated-gate field-effect transistor (IGFET) that is fabricated by the controlled oxidation of a semiconductor, typically silicon.