Ad
related to: chemical potential in semiconductor solutions examples worksheetgenerationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
For example, in a quark–gluon plasma or other QCD matter, at every point in space there is a chemical potential for photons, a chemical potential for electrons, a chemical potential for baryon number, electric charge, and so forth.
A ChemFET is a chemically-sensitive field-effect transistor, that is a field-effect transistor used as a sensor for measuring chemical concentrations in solution. [1] When the target analyte concentration changes, the current through the transistor will change accordingly. [2] Here, the analyte solution separates the source and gate electrodes. [3]
When a semiconductor is in thermal equilibrium, the distribution function of the electrons at the energy level of E is presented by a Fermi–Dirac distribution function. In this case the Fermi level is defined as the level in which the probability of occupation of electron at that energy is 1 ⁄ 2. In thermal equilibrium, there is no need to ...
Band diagram for Schottky barrier at equilibrium Band diagram for semiconductor heterojunction at equilibrium In solid-state physics of semiconductors , a band diagram is a diagram plotting various key electron energy levels ( Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x . [ 1 ]
These two examples show that an electrical potential and a chemical potential can both give the same result: A redistribution of the chemical species. Therefore, it makes sense to combine them into a single "potential", the electrochemical potential , which can directly give the net redistribution taking both into account.
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
In this case, the chemical potential of a body is the infinitesimal amount of work needed to increase the average number of electrons by an infinitesimal amount (even though the number of electrons at any time is an integer, the average number varies continuously.): ( ,) = ( ), where F(N, T) is the free energy function of the grand canonical ...
The slope gives the doping (semiconductor) density (provided that the dielectric constant is known). The intercept to the x axis provides the built-in potential, or the flatband potential (as here the surface barrier has been flattened) and allows establishing the semiconductor conduction band level with respect to the reference of potential.