Search results
Results From The WOW.Com Content Network
The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable. If the conditional distribution of Y {\displaystyle Y} given X {\displaystyle X} is a continuous distribution , then its probability density function is known as the ...
In statistics, a truncated distribution is a conditional distribution that results from restricting the domain of some other probability distribution.Truncated distributions arise in practical statistics in cases where the ability to record, or even to know about, occurrences is limited to values which lie above or below a given threshold or within a specified range.
meaning that the conditional distribution is a normal distribution with mean and precision — equivalently, with variance / (). Suppose also that the marginal distribution of T is given by T ∣ α , β ∼ Gamma ( α , β ) , {\displaystyle T\mid \alpha ,\beta \sim \operatorname {Gamma} (\alpha ,\beta ),}
These concepts are "marginal" because they can be found by summing values in a table along rows or columns, and writing the sum in the margins of the table. [1] The distribution of the marginal variables (the marginal distribution) is obtained by marginalizing (that is, focusing on the sums in the margin) over the distribution of the variables ...
C can be adjusted so it reaches a maximum of 1.0 when there is complete association in a table of any number of rows and columns by dividing C by where k is the number of rows or columns, when the table is square [citation needed], or by where r is the number of rows and c is the number of columns.
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables.
The joint distribution encodes the marginal distributions, i.e. the distributions of each of the individual random variables and the conditional probability distributions, which deal with how the outputs of one random variable are distributed when given information on the outputs of the other random variable(s).
See the entry for noncentral hypergeometric distributions for an explanation of the difference between these two distributions and a discussion of which distribution to use in various situations. The two distributions are both equal to the (central) hypergeometric distribution when the odds ratio is 1.