When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    Established during the 19th century, the Kelvin-Planck statement of the second law says, "It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work." This statement was shown to be equivalent to the statement of Clausius.

  3. Clausius theorem - Wikipedia

    en.wikipedia.org/wiki/Clausius_theorem

    What is now known as the Clausius theorem was first published in 1862 in Clausius' sixth memoir, "On the Application of the Theorem of the Equivalence of Transformations to Interior Work". Clausius sought to show a proportional relationship between entropy and the energy flow by heating (δQ) into a system. In a system, this heat energy can be ...

  4. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    [1] [2] [3] A more fundamental statement was later labelled as the zeroth law after the first three laws had been established. The zeroth law of thermodynamics defines thermal equilibrium and forms a basis for the definition of temperature: if two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium ...

  5. Rudolf Clausius - Wikipedia

    en.wikipedia.org/wiki/Rudolf_Clausius

    He used the now abandoned unit 'Clausius' (symbol: Cl) for entropy. [17] 1 Clausius (Cl) = 1 calorie/degree Celsius (cal/°C) = 4.1868 joules per kelvin (J/K) The landmark 1865 paper in which he introduced the concept of entropy ends with the following summary of the first and second laws of thermodynamics: [4] The energy of the universe is ...

  6. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    The first and second laws of thermodynamics emerged simultaneously in the 1850s, primarily out of the works of William Rankine, Rudolf Clausius, and William Thomson (Lord Kelvin). The foundations of statistical thermodynamics were set out by physicists such as James Clerk Maxwell, Ludwig Boltzmann, Max Planck, Rudolf Clausius and J. Willard Gibbs.

  7. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The above derivation uses the first and second laws of thermodynamics. The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system.

  8. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    The Planck statement applies only to perfect crystalline substances: As temperature falls to zero, the entropy of any pure crystalline substance tends to a universal constant. That is, lim T → 0 S = S 0 {\displaystyle \lim _{T\to 0}S=S_{0}} , where S 0 {\displaystyle S_{0}} is a universal constant that applies for all possible crystals, of ...

  9. Entropy production - Wikipedia

    en.wikipedia.org/wiki/Entropy_production

    This approach provides a dynamic explanation for the Kelvin statement and the Clausius statement of the second law of thermodynamics. [ 6 ] Entropy production in diffusive-reactive system has also been studied, with interesting results emerging from diffusion, cross diffusion and reactions.