Ad
related to: o n algorithm c++ example interview questions
Search results
Results From The WOW.Com Content Network
As a baseline algorithm, selection of the th smallest value in a collection of values can be performed by the following two steps: Sort the collection; If the output of the sorting algorithm is an array, retrieve its th element; otherwise, scan the sorted sequence to find the th element.
Identifying the in-place algorithms with L has some interesting implications; for example, it means that there is a (rather complex) in-place algorithm to determine whether a path exists between two nodes in an undirected graph, [3] a problem that requires O(n) extra space using typical algorithms such as depth-first search (a visited bit for ...
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.
It has a O(n 2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort. Selection sort is noted for its simplicity and has performance advantages over more complicated algorithms in certain situations, particularly where auxiliary memory is limited.
Can the edit distance between two strings of length n be computed in strongly sub-quadratic time? (This is only possible if the strong exponential time hypothesis is false.) Can X + Y sorting be done in o(n 2 log n) time? What is the fastest algorithm for matrix multiplication? Can all-pairs shortest paths be computed in strongly sub-cubic time ...
Karatsuba multiplication is an O(n log 2 3) ≈ O(n 1.585) divide and conquer algorithm, that uses recursion to merge together sub calculations. By rewriting the formula, one makes it possible to do sub calculations / recursion. By doing recursion, one can solve this in a fast manner.
For typical serial sorting algorithms, good behavior is O(n log n), with parallel sort in O(log 2 n), and bad behavior is O(n 2). Ideal behavior for a serial sort is O(n), but this is not possible in the average case. Optimal parallel sorting is O(log n). Swaps for "in-place" algorithms. Memory usage (and use of other computer resources).
Adding n items is an O(n log n) process, making tree sorting a 'fast sort' process. Adding an item to an unbalanced binary tree requires O(n) time in the worst-case: When the tree resembles a linked list (degenerate tree). This results in a worst case of O(n²) time for this sorting algorithm. This worst case occurs when the algorithm operates ...