Search results
Results From The WOW.Com Content Network
According to Stevens' definition, a loudness of 1 sone is equivalent to 40 phons (a 1 kHz tone at 40 dB SPL). [1] The phons scale aligns with dB, not with loudness, so the sone and phon scales are not proportional. Rather, the loudness in sones is, at least very nearly, a power law function of the signal intensity, with an exponent of 0.3.
The horizontal axis shows frequency in Hertz. In acoustics, loudness is the subjective perception of sound pressure.More formally, it is defined as the "attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud". [1]
Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. [1] It is defined [2] as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface."
The Mach number (M or Ma), often only Mach, (/ m ɑː k /; German:) is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound.
Lastly, by making many observations, using a range of different distances, the inaccuracy of the half-second pendulum could be averaged out, giving his final estimate of the speed of sound. Modern stopwatches enable this method to be used today over distances as short as 200–400 metres, and not needing something as loud as a shotgun.
The result is for each frame of each signal a head-internal representation which indicates roughly how loud each frequency component would be perceived. Now, a further idealization step of the reference signal takes place by filtering out excessive timbre and low level stationary noise.
The frequency of a sound is defined as the number of repetitions of its waveform per second, and is measured in hertz; frequency is inversely proportional to wavelength (in a medium of uniform propagation velocity, such as sound in air).
C-Weighting, more sensitive to the lower frequencies, represents what humans hear when the sound is loud (near 100 dB SPL). The IEC 61672-1:2013 mandates the inclusion of an A-weighting filter in all sound level meters, and also describes C and Z (zero) frequency weightings.