Search results
Results From The WOW.Com Content Network
One way to model this behavior is called stochastic rationality. It is assumed that each agent has an unobserved state, which can be considered a random variable. Given that state, the agent behaves rationally. In other words: each agent has, not a single preference-relation, but a distribution over preference-relations (or utility functions).
A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [ 1 ] Realizations of these random variables are generated and inserted into a model of the system.
Stochastic music was pioneered by Iannis Xenakis, who coined the term stochastic music. Specific examples of mathematics, statistics, and physics applied to music composition are the use of the statistical mechanics of gases in Pithoprakta, statistical distribution of points on a plane in Diamorphoses, minimal constraints in Achorripsis, the ...
Stochastic optimization (SO) are optimization methods that generate and use random variables. For stochastic optimization problems, the objective functions or constraints are random. Stochastic optimization also include methods with random iterates .
In the field of mathematical optimization, stochastic programming is a framework for modeling optimization problems that involve uncertainty.A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions.
A simple example may help to explain how the Gillespie algorithm works. Consider a system of molecules of two types, A and B . In this system, A and B reversibly bind together to form AB dimers such that two reactions are possible: either A and B react reversibly to form an AB dimer, or an AB dimer dissociates into A and B .
Here, the intuition is the same as in the construction of the traditional maximum score estimator: the agent is more likely to choose the choice that has the higher observed part of latent utility. Under certain conditions, the smoothed maximum score estimator is consistent, and more importantly, it has an asymptotic normal distribution.
In probability theory, a stochastic process is said to have stationary increments if its change only depends on the time span of observation, but not on the time when the observation was started. Many large families of stochastic processes have stationary increments either by definition (e.g. Lévy processes) or by construction (e.g. random walks)