When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spline interpolation - Wikipedia

    en.wikipedia.org/wiki/Spline_interpolation

    Paper which explains step by step how cubic spline interpolation is done, but only for equidistant knots. Numerical Recipes in C, Go to Chapter 3 Section 3-3; A note on cubic splines; Information about spline interpolation (including code in Fortran 77) TinySpline:Open source C-library for splines which implements cubic spline interpolation

  3. Monotone cubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Monotone_cubic_interpolation

    Example showing non-monotone cubic interpolation (in red) and monotone cubic interpolation (in blue) of a monotone data set. Monotone interpolation can be accomplished using cubic Hermite spline with the tangents m i {\displaystyle m_{i}} modified to ensure the monotonicity of the resulting Hermite spline.

  4. Spline (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Spline_(mathematics)

    The next most simple spline has degree 1. It is also called a linear spline. A closed linear spline (i.e, the first knot and the last are the same) in the plane is just a polygon. A common spline is the natural cubic spline. A cubic spline has degree 3 with continuity C 2, i.e. the values and first and second derivatives are continuous. Natural ...

  5. Bicubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Bicubic_interpolation

    Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing , bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling , when speed is not an issue.

  6. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    Spline interpolation uses low-degree polynomials in each of the intervals, and chooses the polynomial pieces such that they fit smoothly together. The resulting function is called a spline. For instance, the natural cubic spline is piecewise cubic and twice continuously differentiable. Furthermore, its second derivative is zero at the end points.

  7. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    The cubic Hermite spline article will remind you that (,,,) = () for some 4-vector () which is a function of x alone, where is the value at of the function to be interpolated. Rewrite this approximation as

  8. Cubic Hermite spline - Wikipedia

    en.wikipedia.org/wiki/Cubic_Hermite_spline

    Cubic polynomial splines are extensively used in computer graphics and geometric modeling to obtain curves or motion trajectories that pass through specified points of the plane or three-dimensional space. In these applications, each coordinate of the plane or space is separately interpolated by a cubic spline function of a separate parameter t.

  9. Smoothing spline - Wikipedia

    en.wikipedia.org/wiki/Smoothing_spline

    The most familiar example is the cubic smoothing spline, but there are many other possibilities, including for the case where is a vector quantity. Cubic spline ...