When.com Web Search

  1. Ad

    related to: least upper bound proof examples statistics calculator math formula excel

Search results

  1. Results From The WOW.Com Content Network
  2. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real numbers .

  3. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...

  4. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    13934 and other numbers x such that x ≥ 13934 would be an upper bound for S. The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on ...

  5. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  6. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    If (,) is a partially ordered set, such that each pair of elements in has a meet, then indeed = if and only if , since in the latter case indeed is a lower bound of , and since is the greatest lower bound if and only if it is a lower bound. Thus, the partial order defined by the meet in the universal algebra approach coincides with the original ...

  7. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    Proof of the Extreme Value Theorem. By the boundedness theorem, f is bounded from above, hence, by the Dedekind-completeness of the real numbers, the least upper bound (supremum) M of f exists. It is necessary to find a point d in [a, b] such that M = f(d). Let n be a natural number. As M is the least upper bound, M – 1/n is not an upper ...

  8. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Every nonempty subset of that has an upper bound has a least upper bound that is also a real number. These order-theoretic properties lead to a number of fundamental results in real analysis, such as the monotone convergence theorem , the intermediate value theorem and the mean value theorem .

  9. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers ... converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums ...