When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/.../Discrete-time_Fourier_transform

    The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.

  3. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    The conversion from continuous time to samples (discrete-time) changes the underlying Fourier transform of () into a discrete-time Fourier transform (DTFT), which generally entails a type of distortion called aliasing. Choice of an appropriate sample-rate (see Nyquist rate) is the key to minimizing that distortion.

  4. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    [note 3] Still further generalization is possible to functions on groups, which, besides the original Fourier transform on R or R n, notably includes the discrete-time Fourier transform (DTFT, group = Z), the discrete Fourier transform (DFT, group = Z mod N) and the Fourier series or circular Fourier transform (group = S 1, the unit circle ≈ ...

  5. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    The conversion from continuous time to samples (discrete-time) changes the underlying Fourier transform of x(t) into a discrete-time Fourier transform (DTFT), which generally entails a type of distortion called aliasing. Choice of an appropriate sample-rate (see Nyquist rate) is the key to minimizing that distortion.

  6. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    This is sometimes referred to as the sifting property [38] or the sampling property. [39] The delta function is said to "sift out" the value of f(t) at t = T. [40] It follows that the effect of convolving a function f(t) with the time-delayed Dirac delta is to time-delay f(t) by the same amount: [41]

  7. Goertzel algorithm - Wikipedia

    en.wikipedia.org/wiki/Goertzel_algorithm

    The Goertzel algorithm is a technique in digital signal processing (DSP) for efficient evaluation of the individual terms of the discrete Fourier transform (DFT). It is useful in certain practical applications, such as recognition of dual-tone multi-frequency signaling (DTMF) tones produced by the push buttons of the keypad of a traditional analog telephone.

  8. Spectral leakage - Wikipedia

    en.wikipedia.org/wiki/Spectral_leakage

    The Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum.Any linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles of the non-zero values of S(f).

  9. Finite Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Finite_Fourier_transform

    In mathematics the finite Fourier transform may refer to either . another name for discrete-time Fourier transform (DTFT) of a finite-length series. E.g., F.J.Harris (pp. 52–53) describes the finite Fourier transform as a "continuous periodic function" and the discrete Fourier transform (DFT) as "a set of samples of the finite Fourier transform".