Search results
Results From The WOW.Com Content Network
Baryons (three quarks) have a baryon number of +1, mesons (one quark, one antiquark) have a baryon number of 0, and antibaryons (three antiquarks) have a baryon number of −1. Exotic hadrons like pentaquarks (four quarks, one antiquark) and tetraquarks (two quarks, two antiquarks) are also classified as baryons and mesons depending on their ...
Mesons are made of a valence quark–antiquark pair (thus have a baryon number of 0), while baryons are made of three quarks (thus have a baryon number of 1). This article discusses the quark model for the up, down, and strange flavors of quark (which form an approximate flavor SU(3) symmetry). There are generalizations to larger number of flavors.
Mesons named with the letter "f" are scalar mesons (as opposed to a pseudo-scalar meson), and mesons named with the letter "a" are axial-vector mesons (as opposed to an ordinary vector meson) a.k.a. an isoscalar vector meson, while the letters "b" and "h" refer to axial-vector mesons with positive parity, negative C-parity, and quantum numbers I G of 1 + and 0 − respectively.
Because quarks have a spin 1 / 2 , the difference in quark number between mesons and baryons results in conventional two-quark mesons being bosons, whereas baryons are fermions. Each type of meson has a corresponding antiparticle (antimeson) in which quarks are replaced by their corresponding antiquarks and vice versa.
Baryons and mesons are both hadrons, which are particles composed solely of quarks or both quarks and antiquarks. The term baryon is derived from the Greek "βαρύς" ( barys ), meaning "heavy", because, at the time of their naming, it was believed that baryons were characterized by having greater masses than other particles that were classed ...
[4] [5] [b] The discovery of new mesons and baryons continued through the 1950s; the number of known "elementary" particles ballooned. Physicists were interested in understanding hadron-hadron interactions via the strong interaction.
They carry global quantum numbers including the baryon number, which is 1 ⁄ 3 for each quark, hypercharge and one of the flavor quantum numbers. Gluons are spin-1 bosons that also carry color charges, since they lie in the adjoint representation 8 of SU(3). They have no electric charge, do not participate in the weak interactions, and have no ...
Charges are part of the particles' names, and are written as superscripts. All pseudoscalar have spin zero and all vectors have spin one, and this spin is identically equal to the total angular momentum given. The baryon number of all mesons is, indeed, zero. The square roots in the quark content are just normalization factors.