Search results
Results From The WOW.Com Content Network
Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
The sequence of primes numbers contains arithmetic progressions of any length. This result was proven by Ben Green and Terence Tao in 2004 and is now known as the Green–Tao theorem. [3] See also Dirichlet's theorem on arithmetic progressions. As of 2020, the longest known arithmetic progression of primes has length 27: [4]
Each residue class is an arithmetic progression, and thus clopen. Consider the multiples of each prime. These multiples are a residue class (so closed), and the union of these sets is all (Golomb: positive) integers except the units ±1. If there are finitely many primes, that union is a closed set, and so its complement ({±1}) is open.
An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory, especially in Bernoulli processes. For instance, the sequence
Linnik's theorem (1944) concerns the size of the smallest prime in a given arithmetic progression. Linnik proved that the progression a + nd (as n ranges through the positive integers) contains a prime of magnitude at most cd L for absolute constants c and L. Subsequent researchers have reduced L to 5.
In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .
This sequence is the lexicographically first infinite Salem–Spencer set. [5] Another infinite Salem–Spencer set is given by the cubes. 0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, ... (sequence A000578 in the OEIS) It is a theorem of Leonhard Euler that no three cubes are in arithmetic progression. [6]
In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.