Search results
Results From The WOW.Com Content Network
This speed is the asymptotic limiting value of the speed, and the forces acting on the body balance each other more and more closely as the terminal speed is approached. In this example, a speed of 50.0% of terminal speed is reached after only about 3 seconds, while it takes 8 seconds to reach 90%, 15 seconds to reach 99%, and so on.
The Gurney equations relate the following quantities: C - The mass of the explosive charge M - The mass of the accelerated shell or sheet of material (usually metal). The shell or sheet is often referred to as the flyer, or flyer plate.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...
For example, if the initial population of the assembly, N(0), is 1000, then the population at time , (), is 368. A very similar equation will be seen below, which arises when the base of the exponential is chosen to be 2, rather than e. In that case the scaling time is the "half-life".
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The sedimentation coefficient is typically dependent on the concentration of the solute (i.e. a macromolecular solute such as a protein). Despite 80+ years of study, there is not yet a consensus on the way to perfectly model this relationship while also taking into account all possible non-ideal terms to account for the diverse possible sizes, shapes, and densities of molecular solutes. [2]
In order to derive Torricelli's formula the first point with no index is taken at the liquid's surface, and the second just outside the opening. Since the liquid is assumed to be incompressible, ρ 1 {\displaystyle \rho _{1}} is equal to ρ 2 {\displaystyle \rho _{2}} and; both can be represented by one symbol ρ {\displaystyle \rho } .