Search results
Results From The WOW.Com Content Network
Restricted canonical transformations are coordinate transformations where transformed coordinates Q and P do not have explicit time dependence, i.e., = (,) and = (,).The functional form of Hamilton's equations is ˙ =, ˙ = In general, a transformation (q, p) → (Q, P) does not preserve the form of Hamilton's equations but in the absence of time dependence in transformation, some ...
Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) ISBN 0-387-95495-3.Graduate-level textbook on smooth manifolds. Hwa-Chung, Lee, "The Universal Integral Invariants of Hamiltonian Systems and Application to the Theory of Canonical Transformations", Proceedings of the Royal Society of Edinburgh.
In theoretical physics, the Bogoliubov transformation, also known as the Bogoliubov–Valatin transformation, [1] [2] [3] was independently developed in 1958 by Nikolay Bogolyubov and John George Valatin for finding solutions of BCS theory in a homogeneous system.
Thus, the time evolution of a function on a symplectic manifold can be given as a one-parameter family of symplectomorphisms (i.e., canonical transformations, area-preserving diffeomorphisms), with the time being the parameter: Hamiltonian motion is a canonical transformation generated by the Hamiltonian.
The theory of contact transformations (i.e. transformations preserving a contact structure) was developed by Sophus Lie, with the dual aims of studying differential equations (e.g. the Legendre transformation or canonical transformation) and describing the 'change of space element', familiar from projective duality.
Integrating this with respect to Q results in an equation for the generating function of the transformation given by equation : F 3 ( p , Q ) = p Q {\displaystyle F_{3}(p,Q)={\frac {p}{Q}}} To confirm that this is the correct generating function, verify that it matches ( 1 ):
In Hamiltonian mechanics, the linear canonical transformation (LCT) is a family of integral transforms that generalizes many classical transforms. It has 4 parameters and 1 constraint, so it is a 3-dimensional family, and can be visualized as the action of the special linear group SL 2 (C) on the time–frequency plane (domain).
The transformation of coordinates and momenta can allow simplification for solving Hamilton's equations for a given problem. The choice of Q and P is completely arbitrary, but not every choice leads to a canonical transformation. One simple criterion for a transformation q → Q and p → P to be canonical is the Poisson bracket be unity,