When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_methods

    All RungeKutta methods mentioned up to now are explicit methods. Explicit RungeKutta methods are generally unsuitable for the solution of stiff equations because their region of absolute stability is small; in particular, it is bounded. [25] This issue is especially important in the solution of partial differential equations.

  3. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_RungeKutta_methods

    Diagonally Implicit RungeKutta (DIRK) formulae have been widely used for the numerical solution of stiff initial value problems; [6] the advantage of this approach is that here the solution may be found sequentially as opposed to simultaneously.

  4. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/RungeKutta–Fehlberg...

    The novelty of Fehlberg's method is that it is an embedded method from the RungeKutta family, meaning that it reuses the ... "Klassische Runge-Kutta-Nystrom ...

  5. Runge–Kutta method (SDE) - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_method_(SDE)

    A newer RungeKutta scheme also of strong order 1 straightforwardly reduces to the improved Euler scheme for deterministic ODEs. [2] Consider the vector stochastic process () that satisfies the general Ito SDE = (,) + (,), where drift and volatility are sufficiently smooth functions of their arguments.

  6. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    Suppose that we want to solve the differential equation ′ = (,). The trapezoidal rule is given by the formula + = + ((,) + (+, +)), where = + is the step size. [1]This is an implicit method: the value + appears on both sides of the equation, and to actually calculate it, we have to solve an equation which will usually be nonlinear.

  7. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    Numerical methods for ordinary differential equations, such as RungeKutta methods, can be applied to the restated problem and thus be used to evaluate the integral. For instance, the standard fourth-order RungeKutta method applied to the differential equation yields Simpson's rule from above.

  8. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Methods such as RungeKutta take some intermediate steps (for example, a half-step) to obtain a higher order method, but then discard all previous information before taking a second step. Multistep methods attempt to gain efficiency by keeping and using the information from previous steps rather than discarding it.

  9. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any RungeKutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...