When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_methods

    The stability function of an explicit RungeKutta method is a polynomial, so explicit RungeKutta methods can never be A-stable. [32] If the method has order p, then the stability function satisfies () = + (+) as . Thus, it is of interest to study quotients of polynomials of given degrees that approximate the exponential function the best.

  3. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_RungeKutta_methods

    The simplest adaptive Runge–Kutta method involves combining Heun's method, which is order 2, with the Euler method, which is order 1. Its extended Butcher Tableau is:

  4. Adaptive step size - Wikipedia

    en.wikipedia.org/wiki/Adaptive_step_size

    For simplicity, the following example uses the simplest integration method, the Euler method; in practice, higher-order methods such as RungeKutta methods are preferred due to their superior convergence and stability properties. Consider the initial value problem ′ = (, ()), =

  5. Bogacki–Shampine method - Wikipedia

    en.wikipedia.org/wiki/Bogacki–Shampine_method

    The Bogacki–Shampine method is a RungeKutta method of order three with four stages with the First Same As Last (FSAL) property, so that it uses approximately three function evaluations per step. It has an embedded second-order method which can be used to implement adaptive step size .

  6. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/RungeKutta–Fehlberg...

    In mathematics, the RungeKutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of RungeKutta methods .

  7. Dormand–Prince method - Wikipedia

    en.wikipedia.org/wiki/Dormand–Prince_method

    In numerical analysis, the Dormand–Prince (RKDP) method or DOPRI method, is an embedded method for solving ordinary differential equations (ODE). [1] The method is a member of the RungeKutta family of ODE solvers. More specifically, it uses six function evaluations to calculate fourth- and fifth-order accurate solutions.

  8. Cash–Karp method - Wikipedia

    en.wikipedia.org/wiki/Cash–Karp_method

    In numerical analysis, the Cash–Karp method is a method for solving ordinary differential equations (ODEs). It was proposed by Professor Jeff R. Cash [1] from Imperial College London and Alan H. Karp from IBM Scientific Center. The method is a member of the RungeKutta family of ODE solvers. More specifically, it uses six function ...

  9. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    Numerical methods for ordinary differential equations, such as RungeKutta methods, can be applied to the restated problem and thus be used to evaluate the integral. For instance, the standard fourth-order RungeKutta method applied to the differential equation yields Simpson's rule from above.