When.com Web Search

  1. Ad

    related to: how to solve negative polynomial system

Search results

  1. Results From The WOW.Com Content Network
  2. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains 2 {\displaystyle {\sqrt {2}}} , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing 2 {\displaystyle {\sqrt {2}}} by r 2 in the other equations.

  3. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...

  4. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    Finding roots −1/2, −1/ √ 2, and 1/ √ 2 of the cubic 4x 3 + 2x 2 − 2x − 1, showing how negative coefficients and extended segments are handled. Each number shown on a colored line is the negative of its slope and hence a real root of the polynomial. To employ the method, a diagram is drawn starting at the origin.

  5. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.

  6. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  7. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    This can be proved as follows. First, if r is a root of a polynomial with real coefficients, then its complex conjugate is also a root. So the non-real roots, if any, occur as pairs of complex conjugate roots. As a cubic polynomial has three roots (not necessarily distinct) by the fundamental theorem of algebra, at least one root must be real.

  8. Numerical algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Numerical_algebraic_geometry

    Solutions to polynomial systems computed using numerical algebraic geometric methods can be certified, meaning that the approximate solution is "correct".This can be achieved in several ways, either a priori using a certified tracker, [7] [8] or a posteriori by showing that the point is, say, in the basin of convergence for Newton's method.

  9. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    Laguerre's method may even converge to a complex root of the polynomial, because the radicand of the square root may be of a negative number, in the formula for the correction, , given above – manageable so long as complex numbers can be conveniently accommodated for the calculation. This may be considered an advantage or a liability ...