Search results
Results From The WOW.Com Content Network
In particular, for three points in the plane (n = 2), the above matrix is square and the points are collinear if and only if its determinant is zero; since that 3 × 3 determinant is plus or minus twice the area of a triangle with those three points as vertices, this is equivalent to the statement that the three points are collinear if and only ...
The equations originate from the central projection of a point of the object through the optical centre of the camera to the image on the sensor plane. [1] The three points P, Q and R are projected on the plane S through the projection centre C x- and z-axis of the projection of P through the projection centre C
They proved that the maximum number of points in the grid with no three points collinear is (). Similarly to Erdős's 2D construction, this can be accomplished by using points ( x , y , x 2 + y 2 {\displaystyle (x,y,x^{2}+y^{2}} mod p ) {\displaystyle p)} , where p {\displaystyle p} is a prime congruent to 3 mod 4 . [ 20 ]
Points of the line X = Y have coordinates which may be written as (1,1,c). Three points, one from each of these lines, are collinear if and only if a = b + c. By selecting all the points on these lines where a, b and c are the field elements with absolute trace 0, the condition in the definition of a projective triad is satisfied.
Points that are incident with the same line are said to be collinear. The set of all points incident with the same line is called a range. If P 1 = (x 1, y 1, z 1), P 2 = (x 2, y 2, z 2), and P 3 = (x 3, y 3, z 3), then these points are collinear if and only if
A complete quadrangle consists of four points, no three of which are collinear. In the Fano plane, the three points not on a complete quadrangle are the diagonal points of that quadrangle and are collinear. This contradicts the Fano axiom, often used as an axiom for the Euclidean plane, which states that the three diagonal points of a complete ...
The fixed points of the 3-cycles are exp(±iπ/3), corresponding under M to the poles of the sphere: exp(iπ/3) is the origin and exp(−iπ/3) is the point at infinity. Each 3-cycle is a 1/3 turn rotation about their axis, and they are exchanged by the 2-cycles.
Three or more collinear points, where the circumcircles are of infinite radii. Four or more points on a perfect circle, where the triangulation is ambiguous and all circumcenters are trivially identical. In this case the Voronoi diagram contains vertices of degree four or greater and its dual graph contains polygonal faces with four or more sides.