Ads
related to: digraph vs diagraph in math activities 2nd editionadventureacademy.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
In formal terms, a directed graph is an ordered pair G = (V, A) where [1]. V is a set whose elements are called vertices, nodes, or points;; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.
Digraph, often misspelled as diagraph, may refer to: Digraph (orthography), a pair of characters used together to represent a single sound, such as "nq" in Hmong RPA; Ligature (writing), the joining of two letters as a single glyph, such as "æ" Digraph (computing), a group of two characters in computer source code to be treated as a single ...
A directed graph or digraph is a graph in which edges have orientations. In one restricted but very common sense of the term, [ 5 ] a directed graph is an ordered pair G = ( V , E ) {\displaystyle G=(V,E)} comprising:
A signed digraph is a directed graph with signed arcs. Signed digraphs are far more complicated than signed graphs, because only the signs of directed cycles are significant. For instance, there are several definitions of balance, each of which is hard to characterize, in strong contrast with the situation for signed undirected graphs.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
A directed graph is called an oriented graph if none of its pairs of vertices is linked by two mutually symmetric edges. Among directed graphs, the oriented graphs are the ones that have no 2-cycles (that is at most one of (x, y) and (y, x) may be arrows of the graph).