Search results
Results From The WOW.Com Content Network
For a given positive integer m, two integers, a and b, are said to be congruent modulo m if m divides their difference. This binary relation is denoted by, ().This is an equivalence relation on the set of integers, , and the equivalence classes are called congruence classes modulo m or residue classes modulo m.
In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12] In a Boolean ring, which has elements {,} addition is often defined as the symmetric difference.
Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...
A square integer matrix is unimodular if and only if its determinant is 1 or −1, since these two numbers are the only units in the ring of integers. A matrix has a left inverse if and only if its rank equals its number of columns. This left inverse is not unique except for square matrices where the left inverse equal the inverse matrix.
Lighting and reflection calculations, as in the video game OpenArena, use the fast inverse square root code to compute angles of incidence and reflection.. Fast inverse square root, sometimes referred to as Fast InvSqrt() or by the hexadecimal constant 0x5F3759DF, is an algorithm that estimates , the reciprocal (or multiplicative inverse) of the square root of a 32-bit floating-point number in ...
In number theory, reversing the digits of a number n sometimes produces another number m that is divisible by n. This happens trivially when n is a palindromic number; the nontrivial reverse divisors are 1089, 2178, 10989, 21978, 109989, 219978, 1099989, 2199978, ... (sequence A008919 in the OEIS).
In the random-access machine commonly used in algorithm analysis, a simple algorithm that scans the indexes in input order and swaps whenever the scan encounters an index whose reversal is a larger number would perform a linear number of data moves. [10] However, computing the reversal of each index may take a non-constant number of steps.
With this, they show that no integer is in a Baker domain, which implies that any integer is either eventually periodic or belongs to a wandering domain. They conjectured that the latter is not the case, which would make all integer orbits finite. A Collatz fractal centered at the origin, with real parts from -5 to 5.