Search results
Results From The WOW.Com Content Network
If the electric field is uniform, the electric flux passing through a surface of vector area A is = = , where E is the electric field (having the unit V/m), E is its magnitude, A is the area of the surface, and θ is the angle between the electric field lines and the normal (perpendicular) to A.
Bottom: Field line through a curved surface, showing the setup of the unit normal and surface element to calculate flux. To calculate the flux of a vector field F (red arrows) through a surface S the surface is divided into small patches dS. The flux through each patch is equal to the normal (perpendicular) component of the field, the dot ...
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux πa 2 ·E, by Gauss's law equals πa 2 ·σ/ε 0. Thus, σ = ε 0 E. In problems involving conductors set at known potentials, the potential away from them is obtained by solving Laplace's equation, either analytically or ...
In the important case that E(t) is sinusoidally varying at some frequency with peak amplitude E peak, E rms is /, with the average Poynting vector then given by: =. This is the most common form for the energy flux of a plane wave, since sinusoidal field amplitudes are most often expressed in terms of their peak values, and complicated problems ...
Irradiance of a surface, denoted E e ("e" for "energetic", to avoid confusion with photometric quantities), is defined as [2] =, where ∂ is the partial derivative symbol; Φ e is the radiant flux received; A is the area.
where is the flux. It is assumed that the total flux is composed of three elements: diffusion , advection , and electromigration . This implies that the concentration is affected by an ionic concentration gradient ∇ c {\displaystyle \nabla c} , flow velocity v {\displaystyle {\bf {v}}} , and an electric field E {\displaystyle {\bf {E}}} :
In physics and many other areas of science and engineering the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. [a] In the SI system, it has units watts per square metre (W/m 2), or kg⋅s −3 in base units.