Search results
Results From The WOW.Com Content Network
The ocean is a critical component of the Earth's climate system, and the iron cycle plays a key role in ocean primary productivity and marine ecosystem function. Iron limitation has been known to limit the efficiency of the biological carbon pump.
Iron is a key micronutrient in primary productivity, [49] and a limiting nutrient in the Southern ocean, eastern equatorial Pacific, and the subarctic Pacific referred to as High-Nutrient, Low-Chlorophyll (HNLC) regions of the ocean. [50] Iron in the ocean cycles between plankton, aggregated particulates (non-bioavailable iron), and dissolved ...
Full article: Iron Fertilization. Iron fertilization is a facet of geoengineering, which purposefully manipulates the Earth's climate system, typically in aspects of the carbon cycle or radiative forcing. Of current geoengineering interest is the possibility of accelerating the biological pump to increase export of carbon from the surface ocean.
Iron can also be oxidized by marine microbes under conditions that are high in iron and low in oxygen. [202] Iron can enter marine systems through adjoining rivers and directly from the atmosphere. Once iron enters the ocean, it can be distributed throughout the water column through ocean mixing and through recycling on the cellular level. [203]
Marine chemistry, also known as ocean chemistry or chemical oceanography, is the study of the chemical composition and processes of the world’s oceans, including the interactions between seawater, the atmosphere, the seafloor, and marine organisms. [2]
In a paper published in 1998 in Nature, [1] Canfield argued that the deep ocean was anoxic and sulfidic (also known as euxinic) during the time of the Boring Billion (1.8–0.8 billion years ago (Gya)), and that those conditions ceased the mineral deposition of iron-rich banded iron formations (BIF) in ocean sediments.
Ocean iron fertilization is an example of a geoengineering technique that involves intentional introduction of iron-rich deposits into oceans, and is aimed to enhance biological productivity of organisms in ocean waters in order to increase carbon dioxide (CO 2) uptake from the atmosphere, possibly resulting in mitigating its global warming effects.
Iron is a critical phytoplankton micronutrient necessary for enzyme catalysis and electron transport. [3] [4] Between the 1930s and '80s, it was hypothesized that iron is a limiting ocean micronutrient, but there were not sufficient methods reliably to detect iron in seawater to confirm this hypothesis. [5]