Search results
Results From The WOW.Com Content Network
Therefore, nonzero, non-scalar quaternions, or positive scalar quaternions, have exactly two roots, while 0 has exactly one root (0), and negative scalar quaternions have infinitely many roots, which are the vector quaternions located on {} (), i.e., where the scalar part is zero and the vector part is located on the 2-sphere with radius .
In mathematics, quaternions are a non-commutative number system that extends the complex numbers.Quaternions and their applications to rotations were first described in print by Olinde Rodrigues in all but name in 1840, [1] but independently discovered by Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space.
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
It can also be realized as the subgroup of unit quaternions generated by [10] = / and =. The generalized quaternion groups have the property that every abelian subgroup is cyclic. [ 11 ] It can be shown that a finite p -group with this property (every abelian subgroup is cyclic) is either cyclic or a generalized quaternion group as defined ...
William Rowan Hamilton invented quaternions, a mathematical entity in 1843. This article describes Hamilton's original treatment of quaternions, using his notation and terms. Hamilton's treatment is more geometric than the modern approach, which emphasizes quaternions' algebraic properties. Mathematically, quaternions discussed differ from the ...
Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions. This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squares. For this reason the ...
The Hurwitz quaternions form an order (in the sense of ring theory) in the division ring of quaternions with rational components. It is in fact a maximal order; this accounts for its importance. The Lipschitz quaternions, which are the more obvious candidate for the idea of an integral quaternion, also form an order.
A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε 2 = 0 and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra.