Ads
related to: 0.35 to fraction calculator 2
Search results
Results From The WOW.Com Content Network
The marginal propensity to save (MPS) is the fraction of an increase in income that is not spent and instead used for saving. It is the slope of the line plotting saving against income. [ 1 ] For example, if a household earns one extra dollar, and the marginal propensity to save is 0.35, then of that dollar, the household will spend 65 cents ...
In fractions like "2 nanometers per meter" (2 n m / m = 2 nano = 2×10 −9 = 2 ppb = 2 × 0.000 000 001), so the quotients are pure-number coefficients with positive values less than or equal to 1. When parts-per notations, including the percent symbol (%), are used in regular prose (as opposed to mathematical expressions), they are still pure ...
Entry of mixed fractions involves using decimal points to separate the parts. For example, the sequence 3. 1 5. 1 6 →cm converts 3 + 15 ⁄ 16 inches to 10.0 cm (approximately). The calculator may be set to automatically display values as mixed fractions by toggling the FDISP key. The maximum denominator may be specified using the /c function.
The first American-made pocket-sized calculator, the Bowmar 901B (popularly termed The Bowmar Brain), measuring 5.2 by 3.0 by 1.5 inches (132 mm × 76 mm × 38 mm), came out in the Autumn of 1971, with four functions and an eight-digit red LED display, for US$240, while in August 1972 the four-function Sinclair Executive became the first ...
The decibel originates from methods used to quantify signal loss in telegraph and telephone circuits. Until the mid-1920s, the unit for loss was miles of standard cable (MSC). 1 MSC corresponded to the loss of power over one mile (approximately 1.6 km) of standard telephone cable at a frequency of 5000 radians per second (795.8 Hz), and matched closely the smallest attenuation detectable to a ...
These values can be calculated evaluating the quantile function (also known as "inverse CDF" or "ICDF") of the chi-squared distribution; [24] e. g., the χ 2 ICDF for p = 0.05 and df = 7 yields 2.1673 ≈ 2.17 as in the table above, noticing that 1 – p is the p-value from the table.
By {{Convert}} default, the conversion result will be rounded either to precision comparable to that of the input value (the number of digits after the decimal point—or the negative of the number of non-significant zeroes before the point—is increased by one if the conversion is a multiplication by a number between 0.02 and 0.2, remains the ...
Note that if n 2 is the closest perfect square to the desired square x and d = x - n 2 is their difference, it is more convenient to express this approximation in the form of mixed fraction as . Thus, in the previous example, the square root of 15 is 4 − 1 8 . {\displaystyle 4{\tfrac {-1}{8}}.}