When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lyman series - Wikipedia

    en.wikipedia.org/wiki/Lyman_series

    The transitions are named sequentially by Greek letters: from n = 2 to n = 1 is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, and so on. The series is named after its discoverer, Theodore Lyman. The greater the difference in the principal quantum numbers, the higher the energy of the electromagnetic emission.

  3. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    In the Bohr model, the Lyman series includes the lines emitted by transitions of the electron from an outer orbit of quantum number n > 1 to the 1st orbit of quantum number n' = 1. The series is named after its discoverer, Theodore Lyman, who discovered the spectral lines from 1906–1914. All the wavelengths in the Lyman series are in the ...

  4. Lyman-alpha - Wikipedia

    en.wikipedia.org/wiki/Lyman-alpha

    Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .

  5. Lyman continuum photons - Wikipedia

    en.wikipedia.org/wiki/Lyman_continuum_photons

    [1] [2] All the wavelengths in the Lyman series are in the ultraviolet band. This quantized absorption behavior occurs only up to an energy limit, known as the ionization energy . In the case of neutral atomic hydrogen, the minimum ionization energy is equal to the Lyman limit, where the photon has enough energy to completely ionize the atom ...

  6. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    The fine structure energy corrections can be obtained by using perturbation theory.To perform this calculation one must add three corrective terms to the Hamiltonian: the leading order relativistic correction to the kinetic energy, the correction due to the spin–orbit coupling, and the Darwin term coming from the quantum fluctuating motion or zitterbewegung of the electron.

  7. Lyman-alpha forest - Wikipedia

    en.wikipedia.org/wiki/Lyman-alpha_forest

    The Lyman-alpha forest was first discovered in 1970 by astronomer Roger Lynds in an observation of the quasar 4C 05.34. [1] Quasar 4C 05.34 was the farthest object observed to that date, and Lynds noted an unusually large number of absorption lines in its spectrum and suggested that most of the absorption lines were all due to the same Lyman-alpha transition. [2]

  8. Lyman–Werner photons - Wikipedia

    en.wikipedia.org/wiki/Lyman–Werner_photons

    In reference to the figure shown, Lyman-Werner photons are emitted as described below: A hydrogen molecule can absorb a far-ultraviolet photon (11.2 eV < energy of the photon < 13.6 eV) and make a transition from the ground electronic state X to excited state B (Lyman) or C (Werner). Radiative decay occurs rapidly.

  9. Damped Lyman-alpha system - Wikipedia

    en.wikipedia.org/wiki/Damped_Lyman-alpha_system

    They are defined to be systems where the column density (density projected along the line of sight to the quasar) of hydrogen is larger than 2 x 10 20 atoms/cm 2. [1] [2] The observed spectra consist of neutral hydrogen Lyman alpha absorption lines which are broadened by radiation damping. [3]