Search results
Results From The WOW.Com Content Network
Example of a reduction–oxidation reaction between sodium and chlorine, with the OIL RIG mnemonic [1] Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. [2] Electrochemical processes are ET ...
Outer sphere electron transfer can occur between chemical species that are identical except for their oxidation state. [4] This process is termed self-exchange. An example is the degenerate reaction between the tetrahedral ions permanganate and manganate: [MnO 4] − + [Mn*O 4] 2− → [MnO 4] 2− + [Mn*O 4] −
In simpler words, an ionic bond results from the transfer of electrons from a metal to a non-metal to obtain a full valence shell for both atoms. Clean ionic bonding — in which one atom or molecule completely transfers an electron to another — cannot exist: all ionic compounds have some degree of covalent bonding or electron sharing.
In theoretical chemistry, Marcus theory is a theory originally developed by Rudolph A. Marcus, starting in 1956, to explain the rates of electron transfer reactions – the rate at which an electron can move or jump from one chemical species (called the electron donor) to another (called the electron acceptor). [1]
A Proton-coupled electron transfer (PCET) is a chemical reaction that involves the transfer of electrons and protons from one atom to another. The term was originally coined for single proton, single electron processes that are concerted, [ 1 ] but the definition has relaxed to include many related processes.
The wave function of fermions, including electrons, is antisymmetric, meaning that it changes sign when two electrons are swapped; that is, ψ(r 1, r 2) = −ψ(r 2, r 1), where the variables r 1 and r 2 correspond to the first and second electrons, respectively. Since the absolute value is not changed by a sign swap, this corresponds to equal ...
In the mitochondria, electrons are transferred within the intermembrane space by the water-soluble electron transfer protein cytochrome c. [8] This carries only electrons, and these are transferred by the reduction and oxidation of an iron atom that the protein holds within a heme group in its structure.
Carrier generation describes processes by which electrons gain energy and move from the valence band to the conduction band, producing two mobile carriers; while recombination describes processes by which a conduction band electron loses energy and re-occupies the energy state of an electron hole in the valence band.