Ads
related to: hydraulic motor selection calculation
Search results
Results From The WOW.Com Content Network
The hydraulic motor is the rotary counterpart of the hydraulic cylinder as a linear actuator. Most broadly, the category of devices called hydraulic motors has sometimes included those that run on hydropower (namely, water engines and water motors) but in today's terminology the name usually refers more specifically to motors that use hydraulic ...
This is a crucial parameter for pump selection and is a popularly used parameter for ascertaining industrial requirements. By eliminating the inlet head, we remove the effect of the supplied pressure to the pump and are left with only the pump’s energy (head) contribution to the fluid flow. Schematic representation of pressure heads in a pump.
A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy (hydrostatic energy i.e. flow, pressure). Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. They generate flow with enough power to overcome pressure induced by a load at the pump outlet.
Given a flow and head for a specific hydro site, and the RPM requirement of the generator, calculate the specific speed. The result is the main criteria for turbine selection or the starting point for analytical design of a new turbine. Once the desired specific speed is known, basic dimensions of the turbine parts can be easily calculated.
A fluid power system has a pump driven by a prime mover (such as an electric motor or internal combustion engine) that converts mechanical energy into fluid energy, Pressurized fluid is controlled and directed by valves into an actuator device such as a hydraulic cylinder or pneumatic cylinder, to provide linear motion, or a hydraulic motor or pneumatic motor, to provide rotary motion or torque.
Hydraulic cylinder; Hydraulic motor (a pump plumbed in reverse); hydraulic motors with axial configuration use swashplates for highly accurate control and also in 'no stop' continuous (360°) precision positioning mechanisms. These are frequently driven by several hydraulic pistons acting in sequence.