Search results
Results From The WOW.Com Content Network
Finding (,) is the utility maximization problem. If u is continuous and no commodities are free of charge, then x ( p , I ) {\displaystyle x(p,I)} exists, [ 4 ] but it is not necessarily unique. If the preferences of the consumer are complete, transitive and strictly convex then the demand of the consumer contains a unique maximiser for all ...
The expected utility hypothesis is a foundational assumption in mathematical economics concerning decision making under uncertainty. It postulates that rational agents maximize utility, meaning the subjective desirability of their actions. Rational choice theory, a cornerstone of microeconomics, builds this postulate to model aggregate social ...
Merton's portfolio problem is a problem in continuous-time finance and in particular intertemporal portfolio choice.An investor must choose how much to consume and must allocate their wealth between stocks and a risk-free asset so as to maximize expected utility.
In order to compare the different decision outcomes, one commonly assigns a utility value to each of them. If there is uncertainty as to what the outcome will be but one has knowledge about the distribution of the uncertainty, then under the von Neumann–Morgenstern axioms the optimal decision maximizes the expected utility (a probability ...
In decision theory, the von Neumann–Morgenstern (VNM) utility theorem demonstrates that rational choice under uncertainty involves making decisions that take the form of maximizing the expected value of some cardinal utility function. This function is known as the von Neumann–Morgenstern utility function.
In many models in mathematical economics such as general equilibrium models, consumer behavior is implemented as utility maximization and firm behavior as profit maximization, both entities being subject to constraints such as budget constraints and production constraints. The usual way to determine an optimal solution is achieved by maximizing ...
In the context of resource allocation, the utilitarian rule leads to: A particular rule for division of a single homogeneous resource; Several rules and algorithms for utilitarian cake-cutting – dividing a heterogeneous resource; A particular rule for fair item allocation. [9] Welfare maximization problem.
In some cases, there is a unique utility-maximizing bundle for each price and income situation; then, (,) is a function and it is called the Marshallian demand function. If the consumer has strictly convex preferences and the prices of all goods are strictly positive, then there is a unique utility-maximizing bundle.