Search results
Results From The WOW.Com Content Network
Aluminium (or aluminum in North American English) is a chemical element; it has symbol Al and atomic number 13. Aluminium has a density lower than that of other common metals, about one-third that of steel. It has a great affinity towards oxygen, forming a protective layer of oxide on the surface when exposed to air.
A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume). This is incorrect because the unit "%" can only be used for dimensionless quantities. Instead, the concentration should simply be given in units of g/mL.
Molecular weight (M.W.) (for molecular compounds) and formula weight (F.W.) (for non-molecular compounds), are older terms for what is now more correctly called the relative molar mass (M r). [8] This is a dimensionless quantity (i.e., a pure number, without units) equal to the molar mass divided by the molar mass constant .
The standard atomic weight takes into account the isotopic distribution of the element in a given sample (usually assumed to be "normal"). For example, water has a molar mass of 18.0153(3) g/mol, but individual water molecules have molecular masses which range between 18.010 564 6863(15) Da ( 1 H
The density of liquid aluminum is 2.3 g/ml at temperatures between 950 and 1000 °C (1750° to 1830°F). The density of the electrolyte should be less than 2.1 g/ml, so that the molten aluminum separates from the electrolyte and settles properly to the bottom of the electrolysis cell.
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.
2 He helium-4; Hoffer et al. 0.19085 g/cm 3 (from 20.9730 cm 3 /mole; hcp crystal melting to He-II superfluid at 0 K, 25.00 atm) : 0.19083 g/cm 3 (from 20.9749 cm 3 /mole; at local min. density, hcp melting to He-II: 0.884 K, 25.00 atm)
The equivalent weight of an element is the mass which combines with or displaces 1.008 gram of hydrogen or 8.0 grams of oxygen or 35.5 grams of chlorine. The equivalent weight of an element is the mass of a mole of the element divided by the element's valence. That is, in grams, the atomic weight of the element divided by the usual valence. [2]