Search results
Results From The WOW.Com Content Network
If the array abstraction does not support true negative indices (as for example the arrays of Ada and Pascal do), then negative indices for the bounds of the slice for a given dimension are sometimes used to specify an offset from the end of the array in that dimension. In 1-based schemes, -1 generally would indicate the second-to-last item ...
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
The simple Sethi–Ullman algorithm works as follows (for a load/store architecture): . Traverse the abstract syntax tree in pre- or postorder . For every leaf node, if it is a non-constant left-child, assign a 1 (i.e. 1 register is needed to hold the variable/field/etc.), otherwise assign a 0 (it is a non-constant right child or constant leaf node (RHS of an operation – literals, values)).
Array, a sequence of elements of the same type stored contiguously in memory; Record (also called a structure or struct), a collection of fields . Product type (also called a tuple), a record in which the fields are not named
For example, consider the C program below. Let's compute the slice for ( write(sum), sum ). The value of sum is directly affected by the statements "sum = sum + i + w" if N>1 and "int sum = 0" if N <= 1. So, slice( write(sum), sum) is the union of three slices and the "int sum = 0" statement which has no dependencies: slice( sum = sum + i + w ...
Consider the example of [5, 2, 3, 1, 0], following the scheme, after the first partition the array becomes [0, 2, 1, 3, 5], the "index" returned is 2, which is the number 1, when the real pivot, the one we chose to start the partition with was the number 3. With this example, we see how it is necessary to include the returned index of the ...
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
The k-way merge problem consists of merging k sorted arrays to produce a single sorted array with the same elements. Denote by n the total number of elements. n is equal to the size of the output array and the sum of the sizes of the k input arrays. For simplicity, we assume that none of the input arrays is empty.