Ad
related to: basics of data compression techniques in machine learning
Search results
Results From The WOW.Com Content Network
Data compression aims to reduce the size of data files, enhancing storage efficiency and speeding up data transmission. K-means clustering, an unsupervised machine learning algorithm, is employed to partition a dataset into a specified number of clusters, k, each represented by the centroid of its points. This process condenses extensive ...
Prediction by partial matching (PPM) is an adaptive statistical data compression technique based on context modeling and prediction. PPM models use a set of previous symbols in the uncompressed symbol stream to predict the next symbol in the stream. PPM algorithms can also be used to cluster data into predicted groupings in cluster analysis.
Model compression is a machine learning technique for reducing the size of trained models. Large models can achieve high accuracy, but often at the cost of significant resource requirements. Compression techniques aim to compress models without significant performance reduction.
Pruning is a data compression technique in machine learning and search algorithms that reduces the size of decision trees by removing sections of the tree that are non-critical and redundant to classify instances.
To spot matches, the encoder must keep track of some amount of the most recent data, such as the last 2 KB, 4 KB, or 32 KB. The structure in which this data is held is called a sliding window, which is why LZ77 is sometimes called sliding-window compression. The encoder needs to keep this data to look for matches, and the decoder needs to keep ...
Most lossless compression programs do two things in sequence: the first step generates a statistical model for the input data, and the second step uses this model to map input data to bit sequences in such a way that "probable" (i.e. frequently encountered) data will produce shorter output than "improbable" data.
Minimum Description Length (MDL) is a model selection principle where the shortest description of the data is the best model. MDL methods learn through a data compression perspective and are sometimes described as mathematical applications of Occam's razor. The MDL principle can be extended to other forms of inductive inference and learning ...
Run-length encoding (RLE) is a form of lossless data compression in which runs of data (consecutive occurrences of the same data value) are stored as a single occurrence of that data value and a count of its consecutive occurrences, rather than as the original run. As an imaginary example of the concept, when encoding an image built up from ...