Search results
Results From The WOW.Com Content Network
A ray through the unit hyperbola = in the point (,), where is twice the area between the ray, the hyperbola, and the -axis. The earliest and most widely adopted symbols use the prefix arc-(that is: arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth), by analogy with the inverse circular functions (arcsin, etc.).
For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions. The ISO 80000-2 standard uses the prefix "ar-" rather than "arc-" for the inverse hyperbolic functions; we do that here.
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals . In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration .
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle.Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola.
Pages in category "Inverse hyperbolic functions" The following 27 pages are in this category, out of 27 total. This list may not reflect recent changes. ...
Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry proposed for use in both relativity and ...
So for example, by using the equality = , the equation = can be transformed into =, which allows for the solution to the equation = (where :=) to be used; that solution being: = +, which becomes: = + where using the fact that () = and substituting := proves that another solution to = is: = + + +.
Hyperbolic coordinates plotted on the Euclidean plane: all points on the same blue ray share the same coordinate value u, and all points on the same red hyperbola share the same coordinate value v. In mathematics, hyperbolic coordinates are a method of locating points in quadrant I of the Cartesian plane