Search results
Results From The WOW.Com Content Network
A function pointer, also called a subroutine pointer or procedure pointer, is a pointer referencing executable code, rather than data. Dereferencing the function pointer yields the referenced function , which can be invoked and passed arguments just as in a normal function call.
An autorelative pointer is a pointer whose value is interpreted as an offset from the address of the pointer itself; thus, if a data structure has an autorelative pointer member that points to some portion of the data structure itself, then the data structure may be relocated in memory without having to update the value of the auto relative ...
this, self, and Me are keywords used in some computer programming languages to refer to the object, class, or other entity which the currently running code is a part of. The entity referred to thus depends on the execution context (such as which object has its method called).
Another way to create a function object in C++ is to define a non-explicit conversion function to a function pointer type, a function reference type, or a reference to function pointer type. Assuming the conversion does not discard cv-qualifiers , this allows an object of that type to be used as a function with the same signature as the type it ...
When an object is created, a pointer to this table, called the virtual table pointer, vpointer or VPTR, is added as a hidden member of this object. As such, the compiler must also generate "hidden" code in the constructors of each class to initialize a new object's virtual table pointer to the address of its class's virtual method table.
The function point is a "unit of measurement" to express the amount of business functionality an information system (as a product) provides to a user. Function points are used to compute a functional size measurement (FSM) of software. The cost (in dollars or hours) of a single unit is calculated from past projects. [1]
The function that accepts a callback may be designed to store the callback so that it can be called back after returning which is known as asynchronous, non-blocking or deferred. Programming languages support callbacks in different ways such as function pointers, lambda expressions and blocks.
A program can convert a pointer to any type of data (except a function pointer) to a pointer to void and back to the original type without losing information, which makes these pointers useful for polymorphic functions. The C language standard does not guarantee that the different pointer types have the same size or alignment.