When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    The mean eccentricity of an object is the average eccentricity as a result of perturbations over a given time period. Neptune currently has an instant (current epoch ) eccentricity of 0.011 3 , [ 13 ] but from 1800 to 2050 has a mean eccentricity of 0.008 59 .

  3. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    As for instance, if the body passes the periastron at coordinates = (), =, at time =, then to find out the position of the body at any time, you first calculate the mean anomaly from the time and the mean motion by the formula = (), then solve the Kepler equation above to get , then get the coordinates from:

  4. Eccentric anomaly - Wikipedia

    en.wikipedia.org/wiki/Eccentric_anomaly

    In orbital mechanics, the eccentric anomaly is an angular parameter that defines the position of a body that is moving along an elliptic Kepler orbit.The eccentric anomaly is one of three angular parameters ("anomalies") that define a position along an orbit, the other two being the true anomaly and the mean anomaly.

  5. Equation of the center - Wikipedia

    en.wikipedia.org/wiki/Equation_of_the_center

    The word equation (Latin, aequatio, -onis) in the present sense comes from astronomy. It was specified and used by Kepler, as that variable quantity determined by calculation which must be added or subtracted from the mean motion to obtain the true motion. In astronomy, the term equation of time has a similar meaning. [3]

  6. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    The mean anomaly changes linearly with time, scaled by the mean motion, [2] =. where μ is the standard gravitational parameter. Hence if at any instant t 0 the orbital parameters are (e 0, a 0, i 0, Ω 0, ω 0, M 0), then the elements at time t = t 0 + δt is given by (e 0, a 0, i 0, Ω 0, ω 0, M 0 + n δt).

  7. Epoch (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Epoch_(astronomy)

    In astronomy, an epoch or reference epoch is a moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a celestial body, as they are subject to perturbations and vary with time. [1]

  8. Mean anomaly - Wikipedia

    en.wikipedia.org/wiki/Mean_anomaly

    where M 0 is the mean anomaly at the epoch t 0, which may or may not coincide with τ, the time of pericenter passage. The classical method of finding the position of an object in an elliptical orbit from a set of orbital elements is to calculate the mean anomaly by this equation, and then to solve Kepler's equation for the eccentric anomaly.

  9. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    For a given semi-major axis the specific orbital energy is independent of the eccentricity. Using the virial theorem to find: the time-average of the specific potential energy is equal to −2ε the time-average of r −1 is a −1; the time-average of the specific kinetic energy is equal to ε