Ad
related to: 2 modulus 7 formula example problems chemistry classstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that (). [1]In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
For powers of 2 the factor (/) is not cyclic unless k = 0, 1, 2, but factors into cyclic groups as described above. The order of the group φ ( n ) {\displaystyle \varphi (n)} is the product of the orders of the cyclic groups in the direct product.
The remainders in the period, which are 3, 2, 6, 4, 5, 1, form a rearrangement of all nonzero remainders modulo 7, implying that 3 is indeed a primitive root modulo 7. This derives from the fact that a sequence ( g k modulo n ) always repeats after some value of k , since modulo n produces a finite number of values.
Gauss published the first and second proofs of the law of quadratic reciprocity on arts 125–146 and 262 of Disquisitiones Arithmeticae in 1801.. In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers.
The ray class group modulo m is the quotient C m = I m / i(K m,1). [14] [15] A coset of i(K m,1) is called a ray class modulo m. Erich Hecke's original definition of Hecke characters may be interpreted in terms of characters of the ray class group with respect to some modulus m. [16]