Search results
Results From The WOW.Com Content Network
Physically, the turbulence kinetic energy is characterized by measured root-mean-square (RMS) velocity fluctuations. In the Reynolds-averaged Navier Stokes equations, the turbulence kinetic energy can be calculated based on the closure method, i.e. a turbulence model.
where ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and; ν is the kinematic viscosity of the fluid.; Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.
Unlike earlier turbulence models, k-ε model focuses on the mechanisms that affect the turbulent kinetic energy. The mixing length model lacks this kind of generality. [2] The underlying assumption of this model is that the turbulent viscosity is isotropic, in other words, the ratio between Reynolds stress and mean rate of deformations is the same in all directions.
The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first variable being the turbulence kinetic energy (k) while the second (ω) is the specific rate of dissipation (of the turbulence kinetic energy k into internal thermal energy). SST (Menter’s Shear Stress Transport)
The energy spectrum, E(k), thus represents the contribution to turbulence kinetic energy by wavenumbers from k to k + dk. The largest eddies have low wavenumber, and the small eddies have high wavenumbers. Since diffusion goes as the Laplacian of velocity, the dissipation rate may be written in terms of the energy spectrum as:
The Taylor microscale is the intermediate length scale at which fluid viscosity significantly affects the dynamics of turbulent eddies in the flow. This length scale is traditionally applied to turbulent flow which can be characterized by a Kolmogorov spectrum of velocity fluctuations. In such a flow, length scales which are larger than the ...
However, direct numerical simulation is a useful tool in fundamental research in turbulence. Using DNS it is possible to perform "numerical experiments", and extract from them information difficult or impossible to obtain in the laboratory, allowing a better understanding of the physics of turbulence.
Reynolds Stress equation models rely on the Reynolds Stress Transport equation. The equation for the transport of kinematic Reynolds stress = ′ ′ = / is [3] = + + + Rate of change of + Transport of by convection = Transport of by diffusion + Rate of production of + Transport of due to turbulent pressure-strain interactions + Transport of due to rotation + Rate of dissipation of .