Ad
related to: formula for entropy
Search results
Results From The WOW.Com Content Network
Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:
For an open thermodynamic system in which heat and work are transferred by paths separate from the paths for transfer of matter, using this generic balance equation, with respect to the rate of change with time of the extensive quantity entropy , the entropy balance equation is: [53] [54] [note 1] = = ˙ ^ + ˙ + ˙ where = ˙ ^ is the net rate ...
The von Neumann entropy formula is an extension of the Gibbs entropy formula to the quantum mechanical case. It has been shown [ 1 ] that the Gibbs Entropy is equal to the classical "heat engine" entropy characterized by d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\!} , and the generalized Boltzmann distribution is a sufficient and ...
The inspiration for adopting the word entropy in information theory came from the close resemblance between Shannon's formula and very similar known formulae from statistical mechanics. In statistical thermodynamics the most general formula for the thermodynamic entropy S of a thermodynamic system is the Gibbs entropy
Thus the definitions of entropy in statistical mechanics (The Gibbs entropy formula = ) and in classical thermodynamics (=, and the fundamental thermodynamic relation) are equivalent for microcanonical ensemble, and statistical ensembles describing a thermodynamic system in equilibrium with a reservoir, such as the canonical ensemble, grand ...
The connection between thermodynamic entropy and information entropy is given by Boltzmann's equation, which says that S = k B ln W. If we take the base-2 logarithm of W, it will yield the average number of questions we must ask about the microstate of the physical system in order to determine its macrostate. [13]
As the entropy is a function of state the result is independent of the path. The above relation shows that the determination of the entropy requires knowledge of the heat capacity and the equation of state (which is the relation between P,V, and T of the substance involved). Normally these are complicated functions and numerical integration is ...
Boltzmann's grave in the Zentralfriedhof, Vienna, with bust and entropy formula. In statistical mechanics, the entropy S of an isolated system at thermodynamic equilibrium is defined as the natural logarithm of W , the number of distinct microscopic states available to the system given the macroscopic constraints (such as a fixed total energy E ...