Search results
Results From The WOW.Com Content Network
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
A squeeze mapping moves one purple hyperbolic sector to another with the same area. It also squeezes blue and green rectangles.. In 1688, long before abstract group theory, the squeeze mapping was described by Euclid Speidell in the terms of the day: "From a Square and an infinite company of Oblongs on a Superficies, each Equal to that square, how a curve is begotten which shall have the same ...
For instance, a "map" is a "continuous function" in topology, a "linear transformation" in linear algebra, etc. Some authors, such as Serge Lang, [8] use "function" only to refer to maps in which the codomain is a set of numbers (i.e. a subset of R or C), and reserve the term mapping for more general functions.
The following sets will constitute the basic open subsets of topologies on spaces of linear maps. For any subsets and , let (,):= {: ()}.. The family {(,):,} forms a neighborhood basis [1] at the origin for a unique translation-invariant topology on , where this topology is not necessarily a vector topology (that is, it might not make into a TVS).
The transpose is a map ′ ′ and is defined for linear maps between any vector spaces and , without requiring any additional structure. The Hermitian adjoint maps Y → X {\displaystyle Y\to X} and is only defined for linear maps between Hilbert spaces, as it is defined in terms of the inner product on the Hilbert space.
In mathematics, an invariant subspace of a linear mapping T : V → V i.e. from some vector space V to itself, is a subspace W of V that is preserved by T. More generally, an invariant subspace for a collection of linear mappings is a subspace preserved by each mapping individually.
A bilinear map is a function: such that for all , the map (,) is a linear map from to , and for all , the map (,) is a linear map from to . In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed.
Sammon mapping; Scalar field; Second derivative; Self-concordant function; Semi-differentiability; Semilinear map; Set function; List of set identities and relations; Shear mapping; Shekel function; Signomial; Similarity invariance; Soboleva modified hyperbolic tangent; Softmax function; Softplus; Splitting lemma (functions) Squeeze theorem ...