When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.

  3. Multilinear map - Wikipedia

    en.wikipedia.org/wiki/Multilinear_map

    A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, for any nonnegative integer , a multilinear map of k variables is called a k-linear map. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form.

  4. Map (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Map_(mathematics)

    The term map may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. [3] [4] In category theory, a map may refer to a morphism. [2]

  5. Bilinear map - Wikipedia

    en.wikipedia.org/wiki/Bilinear_map

    In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example.

  6. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    A linear isometry also necessarily preserves angles, therefore a linear isometry transformation is a conformal linear transformation. Examples. A linear map from to itself is an isometry (for the dot product) if and only if its matrix is unitary. [10] [11] [12] [13]

  7. Linear form - Wikipedia

    en.wikipedia.org/wiki/Linear_form

    In mathematics, a linear form (also known as a linear functional, [1] a one-form, or a covector) is a linear map [nb 1] ... for example, the evaluation ...

  8. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    Consider a linear map represented as a m × n matrix A with coefficients in a field K (typically or ), that is operating on column vectors x with n components over K. The kernel of this linear map is the set of solutions to the equation Ax = 0, where 0 is understood as the zero vector.

  9. Invariant subspace - Wikipedia

    en.wikipedia.org/wiki/Invariant_subspace

    In mathematics, an invariant subspace of a linear mapping T : V → V i.e. from some vector space V to itself, is a subspace W of V that is preserved by T. More generally, an invariant subspace for a collection of linear mappings is a subspace preserved by each mapping individually.