Search results
Results From The WOW.Com Content Network
A simple pendulum exhibits approximately simple harmonic motion under the conditions of no damping and small amplitude. Assuming no damping, the differential equation governing a simple pendulum of length l {\displaystyle l} , where g {\displaystyle g} is the local acceleration of gravity , is d 2 θ d t 2 + g l sin θ = 0. {\displaystyle ...
A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position.
"Simple gravity pendulum" model assumes no friction or air resistance. A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. [1] When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position.
These curves correspond to the pendulum swinging periodically from side to side. If < then the curve is open, and this corresponds to the pendulum forever swinging through complete circles. In this system the separatrix is the curve that corresponds to =. It separates — hence the name — the phase space into two distinct areas, each with a ...
When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.
Suppose also that the amplitude of the vertical vibrations, , is much less than the length of the pendulum. The pendulum's trajectory in phase space will trace out a spiral around a curve C {\displaystyle C} , moving along C {\displaystyle C} at the slow rate g / l {\displaystyle {\sqrt {g/l}}} but moving around it at the fast rate ω ...
Phase portrait of van der Pol's equation, + + =. Simple pendulum, see picture (right). Simple harmonic oscillator where the phase portrait is made up of ellipses centred at the origin, which is a fixed point. Damped harmonic motion, see animation (right).
A simple pendulum with oscillating pivot point Take a more complicated example. Refer to the next figure at right, Assume the top end of the string is attached to a pivot point undergoing a simple harmonic motion x t = x 0 cos ω t , {\displaystyle x_{t}=x_{0}\cos \omega t,}