Search results
Results From The WOW.Com Content Network
Body tides also exist in other astronomical objects, such as planets and moons. In Earth's moon, body tides "vary by about ±0.1 m each month." [11] It plays a key role in long-term dynamics of planetary systems. For example, it is due to body tides in the Moon that it is captured into the 1:1 spin-orbit resonance and is always showing us one side.
More precisely, the lunar tidal acceleration (along the Moon–Earth axis, at the Earth's surface) is about 1.1 × 10 −7 g, while the solar tidal acceleration (along the Sun–Earth axis, at the Earth's surface) is about 0.52 × 10 −7 g, where g is the gravitational acceleration at the Earth's surface.
Tidal range is the difference in height between high tide and low tide. Tides are the rise and fall of sea levels caused by gravitational forces exerted by the Moon and Sun, by Earth's rotation and by centrifugal force caused by Earth's progression around the Earth-Moon barycenter. Tidal range depends on time and location.
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
High and low tide in the Bay of Fundy. The theory of tides is the application of continuum mechanics to interpret and predict the tidal deformations of planetary and satellite bodies and their atmospheres and oceans (especially Earth's oceans) under the gravitational loading of another astronomical body or bodies (especially the Moon and Sun).
A bore in Morecambe Bay, in the United Kingdom Video of the Arnside Bore, in the United Kingdom The tidal bore in Upper Cook Inlet, in Alaska. A tidal bore, [1] often simply given as bore in context, is a tidal phenomenon in which the leading edge of the incoming tide forms a wave (or waves) of water that travels up a river or narrow bay, reversing the direction of the river or bay's current.
The exact interval between tides is influenced by the position of the Moon and Sun relative to the Earth, as well as the specific location on Earth where the tide is being measured. Due to the Moon's orbital prograde motion , it takes a particular point on the Earth (on average) 24 hours and 50.5 minutes to rotate under the Moon, so the time ...
As the migrating tides stay fixed relative to the Sun a pattern of excitation is formed that is also fixed relative to the Sun. Changes in the tide observed from a stationary viewpoint on the Earth's surface are caused by the rotation of the Earth with respect to this fixed pattern. Seasonal variations of the tides also occur as the Earth tilts ...