Ad
related to: magnetic reluctance effect on humans dna technology articles
Search results
Results From The WOW.Com Content Network
Magnet-assisted transfection is a transfection method which uses magnetic interactions to deliver DNA into target cells. Nucleic acids are associated with magnetic nanoparticles, and magnetic fields drive the nucleic acid-particle complexes into target cells, where the nucleic acids are released.
In 2010, Arnd Pralle and colleges showed that the first in vivo magneto-thermal stimulation of heat sensitive ion channel TRPV1 that employs magnetic nanoparticles as a transducer in C. elegans. [4] In 2012, Seung Chan Kim showed gene expression profile change of total human genome approximately 30,000 genes using 0.2T static magnetic fields. [5]
Magnetic reluctance, or magnetic resistance, is a concept used in the analysis of magnetic circuits. It is defined as the ratio of magnetomotive force (mmf) to magnetic flux . It represents the opposition to magnetic flux, and depends on the geometry and composition of an object.
Magnetic complex reluctance (SI Unit: H −1) is a measurement of a passive magnetic circuit (or element within that circuit) dependent on sinusoidal magnetomotive force (SI Unit: At·Wb −1) and sinusoidal magnetic flux (SI Unit: T·m 2), and this is determined by deriving the ratio of their complex effective amplitudes.[Ref. 1-3] = ˙ ˙ = ˙ ˙ =
Nucleic acid NMR is the use of nuclear magnetic resonance spectroscopy to obtain information about the structure and dynamics of nucleic acid molecules, such as DNA or RNA.It is useful for molecules of up to 100 nucleotides, and as of 2003, nearly half of all known RNA structures had been determined by NMR spectroscopy.
It is the property of certain substances or phenomena that give rise to magnetic fields: =, where Φ is the magnetic flux and is the reluctance of the circuit. It can be seen that the magnetomotive force plays a role in this equation analogous to the voltage V in Ohm's law , V = IR , since it is the cause of magnetic flux in a magnetic circuit ...
Magnetobiology is the study of biological effects of mainly weak static and low-frequency magnetic fields, which do not cause heating of tissues. Magnetobiological effects have unique features that obviously distinguish them from thermal effects; often they are observed for alternating magnetic fields just in separate frequency and amplitude intervals.
Biomagnetics is a field of biotechnology.It has actively been researched since at least 2004. [1] Although the majority of structures found in living organisms are diamagnetic, the magnetic field itself, as well as magnetic nanoparticles, microstructures and paramagnetic molecules can influence specific physiological functions of organisms under certain conditions.
Ad
related to: magnetic reluctance effect on humans dna technology articles